Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
JAMA Netw Open ; 5(2): e2147805, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1680204

ABSTRACT

Importance: The COVID-19 pandemic initially led to the abrupt shutdown of collegiate athletics until guidelines were established for a safe return to play for student athletes. Currently, no literature exists that examines the difference in SARS-CoV-2 test positivity between student athletes and nonathletes at universities across the country. Objective: To identify the difference in risk of COVID-19 infection between student athlete and nonathlete student populations and evaluate the hypothesis that student athletes may display increased SARS-CoV-2 test positivity associated with increased travel, competition, and testing compared with nonathletes at their respective universities. Design, Setting, and Participants: In this cross-sectional analysis, a search of publicly available official university COVID-19 dashboards and press releases was performed for all 65 Power 5 National Collegiate Athletic Association (NCAA) Division I institutions during the 2020 to 2021 academic year. Data were analyzed at the conclusion of the academic year. Schools that released at least 4 months of testing data, including the fall 2020 football season, for student athletes and nonathlete students were included in the analysis. Power 5 NCAA Division I student athletes and their nonathlete student counterparts were included in the analysis. Exposure: Designation as a varsity student athlete. Main Outcomes and Measures: The main outcome was SARS-CoV-2 test positivity for student athletes and nonathlete students at the included institutions for the 2020 to 2021 academic year, measured as a relative risk for student athletes. Results: Among 12 schools with sufficient data available included in the final analysis, 555 372 student athlete tests and 3 482 845 nonathlete student tests were performed. There were 9 schools with decreased test positivity in student athletes compared with nonathlete students (University of Arkansas: 0.01% vs 3.52%; University of Minnesota: 0.63% vs 5.96%; Penn State University: 0.74% vs 6.58%; Clemson University: 0.40% vs 1.88%; University of Louisville: 0.75% vs 3.05%; Purdue University: 0.79% vs 2.97%; University of Michigan: 0.40% vs 1.12%; University of Illinois: 0.17% vs 0.40%; University of Virginia: 0.64% vs 1.04%) (P < .001 for each). The median (range) test positivity in these 9 schools was 0.46% (0.01%-0.79%) for student athletes and 1.04% (0.40%-6.58%) for nonathlete students. In 1 school, test positivity was increased in the student athlete group (Stanford University: 0.20% vs 0.05%; P < .001). Overall, there were 2425 positive tests (0.44%) among student athletes and 30 567 positive tests (0.88%) among nonathlete students, for a relative risk of 0.50 (95% CI, 0.48-0.52; P < .001). There was no statistically significant difference in student athlete test positivity between included schools; however, test positivity among nonathlete students varied considerably between institutions, ranging from 133 of 271 862 tests (0.05%) at Stanford University to 2129 of 32 336 tests (6.58%) at Penn State University. Conclusions and Relevance: This study found that in the setting of SARS-CoV-2 transmission mitigation protocols implemented by the NCAA, participation in intercollegiate athletics was not associated with increased SARS-CoV-2 test positivity. This finding suggests that collegiate athletics may be held without an associated increased risk of infection among student athletes.


Subject(s)
Athletes/statistics & numerical data , COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Sports/statistics & numerical data , Students/statistics & numerical data , Adult , Cross-Sectional Studies , Female , Humans , Male , United States/epidemiology , Universities/statistics & numerical data , Young Adult
4.
Sci Rep ; 11(1): 17798, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1397898

ABSTRACT

There is increasing evidence of cardiac involvement post-SARS-CoV-2 infections in symptomatic as well as in oligo- and asymptomatic athletes. This study aimed to characterize the possible early effects of SARS-CoV-2 infections on myocardial morphology and cardiopulmonary function in athletes. Eight male elite handball players (27 ± 3.5 y) with past SARS-CoV-2 infection were compared with four uninfected teammates (22 ± 2.6 y). Infected athletes were examined 19 ± 7 days after the first positive PCR test. Echocardiographic assessment of the global longitudinal strain under resting conditions was not significantly changed (- 17.7% vs. - 18.1%). However, magnetic resonance imaging showed minor signs of acute inflammation/oedema in all infected athletes (T2-mapping: + 4.1 ms, p = 0.034) without reaching the Lake-Louis criteria. Spiroergometric analysis showed a significant reduction in VO2max (- 292 ml/min, - 7.0%), oxygen pulse (- 2.4 ml/beat, - 10.4%), and respiratory minute volume (VE) (- 18.9 l/min, - 13.8%) in athletes with a history of SARS-CoV2 infection (p < 0.05, respectively). The parameters were unchanged in the uninfected teammates. SARS-CoV2 infection caused impairment of cardiopulmonary performance during physical effort in elite athletes. It seems reasonable to screen athletes after SARS-CoV2 infection with spiroergometry to identify performance limitations and to guide the return to competition.


Subject(s)
Athletes/statistics & numerical data , Athletic Performance/statistics & numerical data , COVID-19/physiopathology , Heart/physiopathology , Lung/physiopathology , Adult , Asymptomatic Infections , Athletic Performance/physiology , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Echocardiography/statistics & numerical data , Exercise Test/statistics & numerical data , Germany , Heart/diagnostic imaging , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Male , RNA, Viral/isolation & purification , Retrospective Studies , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spirometry/statistics & numerical data , Young Adult
5.
MMWR Morb Mortal Wkly Rep ; 69(43): 1591-1594, 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-1380140

ABSTRACT

Data on transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), among college athletes are limited. In August 2020, the Chicago Department of Public Health (CDPH) was notified of a cluster of COVID-19 cases among a university's men's and women's soccer teams. CDPH initiated an investigation, interviewed members of both teams, and collated laboratory data to understand transmission of SARS-CoV-2 within the teams. Numerous social gatherings with limited mask use or social distancing preceded the outbreak. Transmission resulted in 17 laboratory-confirmed COVID-19 cases across both teams (n = 45), likely from a single source introduction of SARS-CoV-2 (based on whole genome sequencing) and subsequent transmission during multiple gatherings. Colleges and universities are at risk for COVID-19 outbreaks because of shared housing and social gatherings where recommended prevention guidance is not followed. Improved strategies to promote mask use and social distancing among college-aged adults need to be implemented, as well as periodic repeat testing to identify asymptomatic infections and prevent outbreaks among groups at increased risk for infection because of frequent exposure to close contacts in congregate settings on and off campus.


Subject(s)
Athletes/statistics & numerical data , COVID-19/epidemiology , Disease Outbreaks , Soccer , Students/statistics & numerical data , Universities , Adolescent , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , Chicago/epidemiology , Contact Tracing , Disease Outbreaks/prevention & control , Female , Humans , Male , Masks/statistics & numerical data , Physical Distancing , Quarantine , SARS-CoV-2/isolation & purification , Young Adult
7.
Br J Sports Med ; 55(20): 1144-1152, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1147327

ABSTRACT

BACKGROUND: There are no data relating symptoms of an acute respiratory illness (ARI) in general, and COVID-19 specifically, to return to play (RTP). OBJECTIVE: To determine if ARI symptoms are associated with more prolonged RTP, and if days to RTP and symptoms (number, type, duration and severity) differ in athletes with COVID-19 versus athletes with other ARI. DESIGN: Cross-sectional descriptive study. SETTING: Online survey. PARTICIPANTS: Athletes with confirmed/suspected COVID-19 (ARICOV) (n=45) and athletes with other ARI (ARIOTH) (n=39). METHODS: Participants recorded days to RTP and completed an online survey detailing ARI symptoms (number, type, severity and duration) in three categories: 'nose and throat', 'chest and neck' and 'whole body'. We report the association between symptoms and RTP (% chance over 40 days) and compare the days to RTP and symptoms (number, type, duration and severity) in ARICOV versus ARIOTH subgroups. RESULTS: The symptom cluster associated with more prolonged RTP (lower chance over 40 days; %) (univariate analysis) was 'excessive fatigue' (75%; p<0.0001), 'chills' (65%; p=0.004), 'fever' (64%; p=0.004), 'headache' (56%; p=0.006), 'altered/loss sense of smell' (51%; p=0.009), 'Chest pain/pressure' (48%; p=0.033), 'difficulty in breathing' (48%; p=0.022) and 'loss of appetite' (47%; p=0.022). 'Excessive fatigue' remained associated with prolonged RTP (p=0.0002) in a multiple model. Compared with ARIOTH, the ARICOV subgroup had more severe disease (greater number, more severe symptoms) and more days to RTP (p=0.0043). CONCLUSION: Symptom clusters may be used by sport and exercise physicians to assist decision making for RTP in athletes with ARI (including COVID-19).


Subject(s)
Athletes/statistics & numerical data , COVID-19/epidemiology , Respiratory Tract Diseases/epidemiology , Return to Sport/statistics & numerical data , Adolescent , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Young Adult
8.
JAMA Cardiol ; 6(7): 745-752, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1116911

ABSTRACT

Importance: The major North American professional sports leagues were among the first to return to full-scale sport activity during the coronavirus disease 2019 (COVID-19) pandemic. Given the unknown incidence of adverse cardiac sequelae after COVID-19 infection in athletes, these leagues implemented a conservative return-to-play (RTP) cardiac testing program aligned with American College of Cardiology recommendations for all athletes testing positive for COVID-19. Objective: To assess the prevalence of detectable inflammatory heart disease in professional athletes with prior COVID-19 infection, using current RTP screening recommendations. Design, Setting, and Participants: This cross-sectional study reviewed RTP cardiac testing performed between May and October 2020 on professional athletes who had tested positive for COVID-19. The professional sports leagues (Major League Soccer, Major League Baseball, National Hockey League, National Football League, and the men's and women's National Basketball Association) implemented mandatory cardiac screening requirements for all players who had tested positive for COVID-19 prior to resumption of team-organized sports activities. Exposures: Troponin testing, electrocardiography (ECG), and resting echocardiography were performed after a positive COVID-19 test result. Interleague, deidentified cardiac data were pooled for collective analysis. Those with abnormal screening test results were referred for additional testing, including cardiac magnetic resonance imaging and/or stress echocardiography. Main Outcomes and Measures: The prevalence of abnormal RTP test results potentially representing COVID-19-associated cardiac injury, and results and outcomes of additional testing generated by the initial screening process. Results: The study included 789 professional athletes (mean [SD] age, 25 [3] years; 777 men [98.5%]). A total of 460 athletes (58.3%) had prior symptomatic COVID-19 illness, and 329 (41.7%) were asymptomatic or paucisymptomatic (minimally symptomatic). Testing was performed a mean (SD) of 19 (17) days (range, 3-156 days) after a positive test result. Abnormal screening results were identified in 30 athletes (3.8%; troponin, 6 athletes [0.8%]; ECG, 10 athletes [1.3%]; echocardiography, 20 athletes [2.5%]), necessitating additional testing; 5 athletes (0.6%) ultimately had cardiac magnetic resonance imaging findings suggesting inflammatory heart disease (myocarditis, 3; pericarditis, 2) that resulted in restriction from play. No adverse cardiac events occurred in athletes who underwent cardiac screening and resumed professional sport participation. Conclusions and Relevance: This study provides large-scale data assessing the prevalence of relevant COVID-19-associated cardiac pathology with implementation of current RTP screening recommendations. While long-term follow-up is ongoing, few cases of inflammatory heart disease have been detected, and a safe return to professional sports activity has thus far been achieved.


Subject(s)
Athletes/statistics & numerical data , COVID-19/epidemiology , Heart Diseases/epidemiology , Mass Screening/methods , Adult , Comorbidity , Cross-Sectional Studies , Female , Humans , Male , Prevalence , Return to Sport , SARS-CoV-2 , United States/epidemiology , Young Adult
9.
MMWR Morb Mortal Wkly Rep ; 70(1): 7-11, 2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1055328

ABSTRACT

To safely resume sports, college and university athletic programs and regional athletic conferences created plans to mitigate transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Mitigation measures included physical distancing, universal masking, and maximizing outdoor activity during training; routine testing; 10-day isolation of persons with COVID-19; and 14-day quarantine of athletes identified as close contacts* of persons with confirmed COVID-19. Regional athletic conferences created testing and quarantine policies based on National Collegiate Athletic Association (NCAA) guidance (1); testing policies varied by conference, school, and sport. To improve compliance with quarantine and reduce the personal and economic burden of quarantine adherence, the quarantine period has been reduced in several countries from 14 days to as few as 5 days with testing (2) or 10 days without testing (3). Data on quarantined athletes participating in NCAA sports were used to characterize COVID-19 exposures and assess the amount of time between quarantine start and first positive SARS-CoV-2 test result. Despite the potential risk for transmission from frequent, close contact associated with athletic activities (4), more athletes reported exposure to COVID-19 at social gatherings (40.7%) and from roommates (31.7%) than they did from exposures associated with athletic activities (12.7%). Among 1,830 quarantined athletes, 458 (25%) received positive reverse transcription-polymerase chain reaction (RT-PCR) test results during the 14-day quarantine, with a mean of 3.8 days from quarantine start (range = 0-14 days) until the positive test result. Among athletes who had not received a positive test result by quarantine day 5, the probability of having a positive test result decreased from 27% after day 5 to <5% after day 10. These findings support new guidance from CDC (5) in which different options are provided to shorten quarantine for persons such as collegiate athletes, especially if doing so will increase compliance, balancing the reduced duration of quarantine against a small but nonzero risk for postquarantine transmission. Improved adherence to mitigation measures (e.g., universal masking, physical distancing, and hand hygiene) at all times could further reduce exposures to SARS-CoV-2 and disruptions to athletic activities because of infections and quarantine (1,6).


Subject(s)
Athletes/statistics & numerical data , COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , COVID-19/prevention & control , Quarantine/statistics & numerical data , COVID-19/epidemiology , COVID-19/transmission , Humans , Retrospective Studies , Time Factors , United States/epidemiology , Universities
10.
Front Public Health ; 8: 561198, 2020.
Article in English | MEDLINE | ID: covidwho-1045492

ABSTRACT

The COVID-19 outbreak has affected the sports field unprecedentedly. The emergency alert has deprived athletes of training in a suitable environment, as they are faced with cancellations of relevant events in their sports careers. This situation can cause stress levels and other emotional disorders similar to those experienced by athletes during periods of injury. Since the relationship between psychological factors and sports injuries is well-studied, the Global Psychological Model of Sports Injury (MGPLD) is applied to this historical situation for athletes. The purpose of this study was to analyze the relationships between perfectionism and trait anxiety with indicators of mental health (mood, depression, state anxiety, and stress) in high-performance athletes during confinement due to the COVID-19 pandemic, as well as to explore the coping strategies that athletes have applied and whether they are perceived as useful for managing negative emotional states. A cross-sectional study was conducted through online questionnaires during April 2020, adapting the Psychological Assessment Protocol of the High-Performance Sports Center of Murcia (Spain), to assess the psychological effects of confinement in a cross-cultural sample of 310 athletes (141 women and 169 men) from different countries in Europe, Asia, and America, and from diverse sports disciplines. The protocol comprised six instruments that test perfectionism, trait anxiety, mood states, stress, depression, coping strategies, and sleep. It was answered online via Google Forms. The results show that maladaptive perfectionism was related to all the indicators of athletes' mental health. However, athletes' levels of anxiety, stress, and depressive symptoms are relatively low, and the use of coping strategies such as cognitive restructuring and emotional calm was associated with lower levels of negative emotional states. Besides, the Iceberg Profile, a suitable fit for the mental health model, is observed in the mood of athletes, both in men and in women, although women showed higher levels of anxiety, stress, and depression than men. A strong relationship was observed between maladaptive perfectionism and martial arts sports discipline, superior to other sports. In short, it can be concluded that high-performance athletes in the studied sample showed negative emotional state values below the expected average. Finally, the proposals for practical applications of the results collected are discussed.


Subject(s)
Adaptation, Psychological , Athletes , Athletic Performance/psychology , COVID-19 , Mental Health , Personality , Adult , Anxiety/psychology , Athletes/psychology , Athletes/statistics & numerical data , Cross-Sectional Studies , Female , Humans , Internationality , Male , Perfectionism , Stress, Psychological/psychology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL